

Issued Date: 2023. 6

광섬유케이블규격

공압포설용(ABC)

- ▶단일모드 G652D /G657A1
- ▶젤리루즈튜브
- ▶비금속인장선
- ▶PE 피복

Prepared by: J. Y. LEE

Approved by:	SH KIM	

1. 적용범위

본 규격은 광통신시스템 선로에 사용되는 장파장용 단일모드 광섬유(G652D 또는 G657A1)를 사용하는 젤리루즈튜브, 비금속인장선구조의 공압포설용 광섬유케이블에 대하여 적용한다.

2. 종 류

2.1 공압포설용 광섬유케이블의 종류, 케이블외경, 케이블중량 및 최대허용인장력은표 1 과 같다.

표 1. 공압포설용 광섬유 케이블 종류, 케이블외경, 케이블 중량, 최대허용인장력

구 분	광섬유 코어수	케이블 외경 Nom.(mm)	케이블중량 Nom.(kg/km)	최대허용인장력 (kgf)
	~72C	5.8	22	80
	96C	6.8	33	120
공압포설용	120C	8.0	46	130
	144C	8.8	50	130
	288C	9.6	72	130

3. 재료 및 구조 형태

3.1 재료

- 3.1.1 광섬유 심선
 - (1) 광섬유 심선의 코어(Core)와 클래딩(Cladding)은 석영계 유리를 주재료로 하여야 한다.
 - (2) 광섬유 심선의 코팅재료는 수지(Plastic) 계열의 것으로서 필요시(접속, 측정 등)에 벗겨져야 한다.
 - (3) 1 차코팅상태에서 100kpsi(0.69GPa)이상의 인장시험(Proof Test)을 연속적으로 거친 것을 사용하여야 한다.

3.1.2. 젤리콤파운드

- (1) 비전도성, 비흡수성 및 방부성의 재료를 사용하여야 하며, 심선 식별에 영향을 미치지 않아야 한다.
- (2) 이물질이나 독성이 없고 케이블 특성에 영향을 미치지 않아야 한다.
- (3) 심선 접속 작업 시 쉽게 제거할 수 있어야 한다.

3.1.3 루즈튜브

루즈튜브는 PBT (Polybutylene Terephthalate) 수지 계열의 것으로 사용하여야 한다.

3.1.4 개재심(Filler)

케이블의 원형 유지를 위해 튜브 외에 개재심(필러)을 사용할 수 있으며, 개재심은 폴리머(Polymer)재질을 사용하여야 한다.

3.1.5 중심인장선

중심인장선은 FRP 계열의 수지를 사용하고, 필요시 중심인장선에 PE 코팅을 할 수 있다.

3.1.6 방수사 & 방수테이프

방수사, 방수 테이프는 방수 특성을 만족시키는 것이어야 한다

3.1.7 립코드(RIP CORD)

케이블외피 탈피가 가능한 폴리에스터 또는 동등이상의 재료이어야 한다

3.1.8 외피용 PE

외피용 PE는 흑색 PE를 사용하여야 한다.

3.2 구조 및 형태

3.2.1 광섬유 심선

광섬유 심선의 구조는 부도 1 과 같아야 한다 또한 동일 유니트 내 광섬유 심선의 식별이용이해야 하며, 변색되지 않아야 한다. 그 색상은 표 2 와 같아야 한다

표 2. 유니트 내 광섬유/유니트 색상 식별표

심선번호	색상	심선번호	색상	심선번호	색상
1	청(Blue)	7	갈(Brown)	13	자연색
2	등(Orange)	8	흑(Black)	14	자연색
3	녹(Green)	9	백(White)	15	자연색
4	적(Red)	10	회(Gray)		
5	황(Yellow)	11	청록(Aqua)		
6	자(Violet)	12	분홍(Pink)		

3.2.2 루즈튜브

튜브 내에 광섬유 심선 및 젤리 콤파운드를 삽입하여 유니트를 구성하고 중심인장선의

동심원상에 표 3 과 같이 유니트를 배열하여 하며, 튜브의 색상은 표 2 와 같게 식별 할 수 있도록 하여야 한다. 또한 튜브내 심선수가 상이한 규격의 경우 잔여심선을 마지막 튜브에 적용한다

표 3 심선수별 유니트 구성

심선수	심수/튜브	튜브수	개재수	유니트구성	
~12	~12	1	5	1층구조	1*6유니트구조 -
24	12	2	4	1층구조	1*6유니트구조 -
36	12	3	3	1층구조	1*6유니트구조 -
48	12	4	2	1층구조	1*6유니트구조 -
60	12	5	1	1층구조	1*6유니트구조 -
72	12	6	0	1층구조	1*6유니트구조 -
96	12	8	0	1층구조	1*8유니트구조 -
120	12	10	0	1층구조	1*10유니트구조
144	12	12	0	1층구조	1*12유니트구조 -
288	12	24	0	2층구조	1*9*15유니트구조

표 4. 유니트 색상 식별표

0115#=	1 층구조	2 층구조		
유니트번호		1층	2 층	
1	청(Blue)	청(Blue)	회(Gray)	
2	등(Orange)	등(Orange)	청록(Aqua)	
3	녹(Green)	녹(Green)	분홍(Pink)	
4	적(Red)	적(Red)	청(Blue)-흑색줄	
5	황(Yellow)	황(Yellow)	등(Orange)-흑색줄	
6	자(Violet)	자(Violet)	녹(Green)-흑색줄	
7	갈(Brown)	갈(Brown)	적(Red)-흑색줄	
8	흑(Black)	흑(Black)	황(Yellow)-흑색줄	
9	백(White)	백(White)	자(Violet)-흑색줄	
10	회(Gray)		갈(Brown)-흑색줄	
11	청록(Aqua)		흑(Black)-백색줄	
12	분홍(Pink)		백(White)-흑색줄	
13			회(Gray)-흑색줄	
14			청록(Aqua)-흑색줄	
15			분홍(Pink)-흑색줄	

3.2.3 케이블 인장선

케이블 인장선은 케이블의 중심에 위치하거나, 케이블의 외피 속에서 외피와 동심원상에 적당한 간격으로 배열하여야 한다.

3.2.4 케이블심

루즈튜브와 개재심을 중심인장선 위에 동심원상에 SZ 형태로 집합하고, 방수테이프를 적용한다. 이때 루즈튜브와 중심인장선 사이에 방수 특성을 위해 방수사를 삽입할수 있으며. 광케이블특성을 향상시키기위해 기타 유니트 지지물, 완충재 등을 사용 할 수 있다. 광케이블심의 구조는 부도 2 와 같아야한다

3.2.5 케이블 외피

3.2.4 항에서 형성된 케이블심 위에 흑색 PE 로 접속점 없이 균일하게 피복하여야 한다. 이때 필요시 인장보강층등을 PE 압출전 적용할 수있으며, 케이블외피탈피가 용이하게 하기 위하여 립코드를 적용할수 있다.

4. 성능

4.1 광케이블 광학적특성

광케이블의 광섬유는 표4와 같은 광학적 특성을 만족하여야한다.

표 4-1. 단일모드 광섬유(G652D) 심선의 광학적 특성

	T	I	
항목	단위	규격치	비고
손실계수	1310nm	0.36dB/km 이하	
C2/11	1550nm	0.22dB/km 이하	
구부림손실	1550nm	0.1dB	직경 75mm, 100회
손실균일성(운용파장)		0.05dB	
파장별	1285~1330nm	0.1dB/km 이하	1310nm 기준
손실차	1525~1575nm	0.05dB/km 이하	1550nm 기준
색분산 계수	1290~1330nm	3.2ps/nm.km 이하	
	1550nm	18ps/nm.km	
영분산파장		1300~1322nm	
색분산 기울기		0.095ps/nm².km 이하	
차단파장		λ cc ≤ 1260nm	

모드필드 직경	9.2±0.4 μm	
클래딩 직경	125±1 μm	
클래딩 비원율	1% 이하	
코팅 외경	245±10 μm	

표 4-2. 단일모드 광섬유(G657A1) 심선의 광학적 특성

항목	단위	규격치	비고
	1310nm	0.36dB/km 이하	
손실계수	1383nm	0.22dB/km 이하	
[문글개구	1550nm	0.22dB/km 이하	
	1550nm	0.27dB/km 이하	
	1550nm	0.75B 이하	직경 20mm, 1 회
구부림손실	1625nm	1.5dB 이하	직경 20mm, 1 회
	1550nm	0.25dB 이하	직경 30mm, 10 회
	1625nm	1.0dB 이하	직경 30mm, 10 회
손실균일성	d(운용파장)	0.05dB	
파장별	1285~1330nm	0.05dB/km 이하	1310nm 기준
실차 소실차	1525~1565nm	0.03dB/km 이하	최대값-최소값기준
	1565~1610nm	0.03dB/km 이하	최대값-최소값기준
색분산 계수	1290~1330nm	3.2ps/nm.km 이하	
	1550nm	18ps/nm.km	
영분(산파장	1300~1322nm	영분산파장에서
색분산	기울기	0.095ps/nm².km 이하	
차단파장		λ cc ≤ 1260nm	
모드필드 직경		8.9±0.4 μm	
클래딩 직경		125±1 μm	
클래딩 비원율		1% 이하	
코팅 외경		245±10 μm	
클래딩 비원율		1% 이하	
코팅 외경		245±10 μm	

4.2 기계/환경 특성

광섬유 케이블은 다음과 같은 기계적, 환경적 특성을 만족하여야 한다. 단 특성 측정치계측기의 사용파장은 단일모드 광섬유일 경우는 1550nm 로 한다. 계측기의 측정 오차

±0.02dB 를 인정한다.

4.2.1 온도 특성

임의로 추출된 광케이블 드럼을 항온조에 넣어 4.2.1.1 과 같은 온도특성 시험을 진행하였을 때 아래 4.2.1.2 항의 특성을 만족하여야 한다.

4.2.1.1 온도변화과정

과정	온도	습도	유지시간
1	+20°C±3°C	90% 이상	24 시간
2	+60°C±3°C	90% 이상	24 시간
3	-30°C±3°C	-	24 시간
4	+20°C±3°C	90% 이상	24 시간

4.2.1.2 요구특성

임의로 추출된 광섬유에 대하여 과정별로 끝에서 손실을 측정하였을 때 과정 1 의 경과시간이 지난 후 손실치를 기준으로 하여 다음 특성을 만족하여야 한다. 이때, 시료의 전장이 1km 이하일 경우에는 2코어 이상의 심선을 접속하여 시험한다.

항목	손실특성 범위
과정 2,과정 3 각각의 최대 손실변화	0.2dB/km 이하
원상 복구시(과정 4) 최대 손실변화	0.1dB/km 이하

4.2.2 인장 특성

9~25m 사이의 두 맨드렐(Mandrel)에 길이 90m 이상의 케이블을 2 번 이상 감은 후, 표 1 의 최대허용인장력으로 50mm/분의 속도로 인장하고 1 시간을 유지하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실변화는 0.1dB 이하여야한다. 이때 맨드렐의 직경은 케이블 직경의 30배 이하이여야한다.

4.2.3 굴곡 특성

케이블의 임의 지점에서 케이블 외경의 20 배 되는 원동에 ±180°로 5 회 굴곡하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실변화가 0.1dB 하이여야 한다.

4.2.4 압축 특성

케이블의 임의지점에서 50 ±5mm 의 정사각형 금속평판을 25Kg 하중으로 5 분간 압축하였을 때 광섬유의 절단이나 케이블 외피에 균열이 없고 손실 변화가 0.1dB

이하이여야 한다.

4.2.5 비틀림 특성

케이블의 임의 지점에서 한 지점을 고정시키고, 이 지점으로부터 2m 되는 지점에서 10kg 의 인장 하중을 주면서 ± 180°로 10 회 비틀었을 때 케이블 외피에 균열이 없고 손실 변화가 0.1dB 이하이여야 한다.

4.2.6 충격 특성

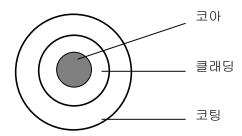
케이블의 임의지점에서 직경 25mm, 무게 0.5Kg 인 금속봉을 0.5m 높이에서 10 개부위에 각 1 회씩 떨어뜨렸을 때 케이블 외피에 균열이 없고 손실변화가 0.1dB 이하이여야 한다.

4.2.7 방수 특성

3m 길이의 케이블 양단을 깨끗이 절단 후 수평으로 놓고, 한쪽 끝에 1m 높이의 수압을 온도 23±2℃에서 1 시간 동안 가했을 때 다른 쪽 끝으로 물이 새어 나오지 않도록 한다.

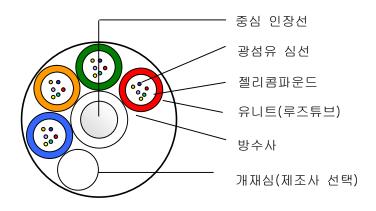
5. 표시

광케이블 외피에는 1m 마다 시단에서 종단으로 케이블 길이, 제조년도, 케이블규격명, 제조자명, 제조번호(xxxx)를 연속적으로 표시하여야 한다. 고객의 요청에 의해 케이블 외피에 색상 띠줄, 마크 등이 추가 될 수 있으며, 내용 및 위치는 고객 요청에 따른다.

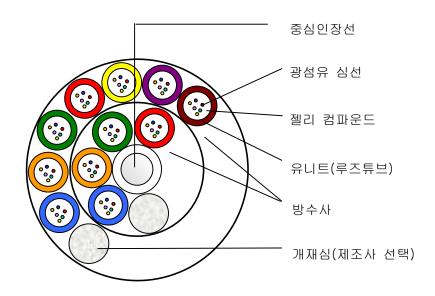

6. 포장

케이블 양단에는 습기가 침입하지 않도록 PVC캡 또는 적당한 재료로 밀봉되어야 한다. 광섬유 케이블 드럼에는 다음 사항을 표시한다.

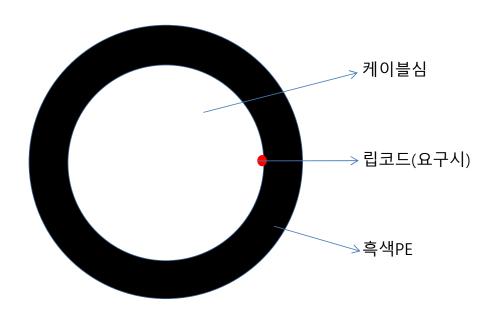
- 1) 제작회사명 및 제조년월일
- 2) 케이블품명, 규격 및 조장
- 3) 케이블 총중량 및 실중량
- 4) 케이블 끝 표시
- 5) 케이블 풀림방향, 굴림방향



부도 1 광섬유 심선 구조


부도 2 광케이블 심 구조

(1) 1 층 구조



(2) 2층 구조

부도 3 공압포설용 광케이블의 외피구조

